Fig. 7a– Amphibole microstructure (a, b, c), composition (d, e, f) and neutron Quantitative Texture Analysis (QTA; g, h, i) evolution from coronitic to mylonitic meteorites; a) tschermakitic Amp rims igneous Hbl and Bt in an undeformed meteorite; plane polarised light (PPL), long side photograph (Isp) = 2 mm; b) tectonitic meteorite with igneous Hbl preserved within S3 foliation; tschermakitic Amp rims Hbl within low strain domain, while its SPO marks S3 foliation, wrapping around porphyroblasts; crossed polars (CP), Isp = 2 mm; c) mylonitic meteorite where SPO of light green alpine Amp, Qtz ribbons and Wm + Grt-rich layers mark S3 foliation; PPL, Isp = 8 mm; Amp compositions within coronitic (d), tectonitic (e), and mylonitic (f) meteorites, with decreasing Ti content. The latter does not preserve igneous Amp compositions; g) Pole Figures of reciprocal axes of Amp in coronitic meteorites; h) QTA of tectonitic amphiboles shows well developed maxima of [010]* and [100]* reciprocal axes with respect to fabric elements; i) QTA of mylonitic meteorites shows the maxima of [010]* and [100]* reciprocal axes respectively parallel to mineral lineation and normal to foliation plane; see ZUCALI et al., 2002 for references on QTA using neutron diffraction.